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Model Reference Adaptive Control of a Flexible Structure

Kyung-Jinn Yang, Keum-Shik Hong*, Eun-Jun Rhee, Wan-Suk Yoo
School of Mechanical Engineering, Pusan National University,

Pusan 609-735, Korea

In this paper, the model reference adaptive control (MRAC) of a flexible structure is

investigated. Any mechanically flexible structure is inherently distributed parameter in nature,

so that its dynamics are described by a partial, rather than ordinary, differential equation. The

MRAC problem is formulated as an initial value problem of coupled partial and ordinary

differential equations in weak form. The well-posedness of the initial value problem is proved.

The control law is derived by using the Lyapunov redesign method on an infinite dimensional

Hilbert space. Uniform asymptotic stability of the closed loop system is established, and

asymptotic tracking, i. e., convergence of the state-error to zero, is obtained. With an additional

persistence of excitation condition for the reference model, parameter-error convergence to zero

is also shown. Numerical simulations are provided.

Key Words: Model Reference Adaptive Control, Distributed Parameter System, Uniform
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1. Introduction

A large space structure, or any mechanically

flexible structure, is inherently a distributed

parameter system (DPS) whose dynamics is

described by a partial, rather than ordinary,

differential equation (PDE). In many cases such

a detailed description, i. e., a PDE model, may

not be necessary for the successful operation of
the system, and a lumped parameter (ordinary

differential equation) model may be satisfactory.

Nevertheless, a large number of current and newly

proposed systems are so thoroughly distributed

parameter in nature that it is impossible to ignore

this fact in modeling and controL A great deal of

research on DPS control have appeared in the

literature because of the construction and opera-
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tion in orbit of large flexible spacecraft and
satellites in outer space.

Such a DPS is described by an operator equa

tion on an infinite-dimensional Hilbert (or

Banach) space. The analysis of a DPS makes use

of the theory of semigroup on an infinite-dime

nsional state space. The infinite-dimensional ap

proach will yield results that can be used
effectively in large-scale finite-dimensional

systems as well. One very important consideration

in large-scale or distributed parameter systems is

to avoid dependence on precise knowledge of the

total system dimension and the full system

parameters, especially those residual parameters

that are not used in the synthesis of the controller.

The infinite-dimensional approach can eliminate
the uncertainty about the system dimension and

spillover problems on residual data.

In flexible systems, not only the geometry of the

structure but also physical properties such as the

density, stiffness, Poisson ratio and damping

coefficients may change with time. Indeed, many

of these parameters are unknown even if the

material itself is homogeneous and the structure is

uniform. Thus, the control problem of flexible
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structures provides challenging issues including

parameter estimation, uncertainty quantification,

and robustness.

Compared to finite dimensional adaptive con
trol (Astrorn and Wittenmark, 1995; Sastry and

Bodson, 1989), the adaptive control of infinite

dimensional systems is not well developed and
has only recently been studied. In (Balas, 1983;

Balas, 1998) some of the possible directions of

investigation and the main areas of difficulty for

infinite dimensional adaptive control were

surveyed. Wen and Balas (1985, 1989) proposed a

direct model reference adaptive control (MRAC)

in an infinite dimensional Hilbert space and

analyzed the Lagrange stability of the closed loop

system. Finite dimensional adaptive controllers
including stability analysis were investigated in

(Kobayashi, 1988) for spectral systems and in

(Miyasato, 1990) for parabolic systems. An

indirect adaptive control algorithm for a class of

infinite dimensional stochastic evolution

equations has been developed by Duncan et al.
(1994). Hong and Bentsman (1994) considered

the MRAC of a linear parabolic partial

differential equation and established the

exponential stability of the closed loop system by

applying averaging. The MRAC for a time

varying parabolic system was also investigated in
Hong et al. (2000).

The objective of a MRAC scheme is to deter

mine a feedback control law which forces the state

of the plant to asymptotically track the state of a
given reference model. At the same time, the

unknown parameters in the plant model are
estimated and used to update the control law.

Typically, the resulting closed loop system

consisting of the plant, the reference model, and

the estimator, will be nonlinear. This is true even

if the underlying plant, reference models, and the
estimator are linear. The nonlinearity arises due

to the coupling of the state and parameter estima

tion errors. Consequently, the scheme requires a

careful stability analysis to ensure that all signals

(both input and output) remain, in some sense,

bounded. It is also desirable, although not neces

sarily essential, that some sort of parameter con

vergence be achieved.

In this paper, the MRAC of a flexible structure

which is described by a linear hyperbolic partial

differential equation is investigated. Our effort

here is closely related to the earlier treatment of

adaptive control for distributed parameter systems

in (Hong and Bentsman, 1994; Bohm et aI., 1998).

The present paper makes the following con

tributions: To the best of the authors' knowledge

this paper is the first treatment of a flexible
structure in the frame of MRAC. The well

posedness of the closed loop system is established.
Using an appropriate Lyapunov function,

asymptotic tracking error convergence to zero is

established. With the additional condition of

persistence of excitation, the convergence of

parameter estimation errors to zero is established

as well.

2. Problem Formulation

Regarding the reference model in the MRAC of

a flexible structure, the model itself can be chosen

to have the same structure as the actual plant, but

using different mass, stiffness, and damping
parameters. Specifically, if a plant is given in

operator form, either a linear or a nonlinear

distributed parameter system, as

M(ql) U n + D (q2) u'+K(qa) u=!

then, the reference model can be chosen as

M(qt) u"+D(q;) v'+K(q;) v=g

where ql, qz, and qa are the plant mass, damping,
and stiffness parameters, respectively, while qt,
q2*, and q; are the reference model mass,

damping, and stiffness parameters, respectively.

The parameters qt, q2*, and q; are chosen so that

the response {v, v'} can have the desired
characteristics.

In this paper, the transverse vibrations of an

Euler-Bernoulli beam with Kelvin-Voigt

damping, as shown schematically in Fig. 1, is

considered. In many cases this simple model

retains the essential features of more complicated

large flexible structures.
The equations of motion for one dimensional

Euler-Bernoulli beam, with both ends fixed and
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<r/J(x), T/I(X»H= l.r/J(x) T/I(x) dx,

(r/J(x), T/I(x»y= l.DZr/J(x) VT/I(x) dx,

(5)

(6)

ciently smooth test function tp, and are integrated

by parts in the usual manner. Assuming that tp

satisfies the boundary conditions q;(x) =oq;(x)!
ax=o at x=o and x=a, the weak form of (2) IS

defined as

lUtt (t, x) g1(x) dx+lQIIfU (t, x) Ifg1(x) dx

+lQ.tIfUt(t, x) IJg1(x) dx= lQJ (t, x) g1(x) dx (3)

where r= [0, a], D=a!ax, and the coefficients

qt, i=l, 2, 3, are unknown. It is pointed out that

in the weak form the derivatives have been

transferred from the beam moments onto the test

function. This eliminates the problem of having to
approximate the derivatives of the characteristic

function and the Dirac delta function, as is the

case with the strong form of the equation. In this
paper it is assumed that the system state U (t, x)
can be measured at all points of xEr and t ~O.

To pose the MRAC problem, two function

spaces are first introduced. Let H and V be the

Hilbert spaces given by H~U(n and v~m

(r), which are defined as follows:

U(r)={7J:[O,a]--+Rlt7JZdx<oo} (4)

Hl(T) ={ TjELZ(r) IDTj, DZTjEU(T),
and Tj (x) =DTj (x) =0 at x=O, a}

The inner products in and are defined respectively
as

and the corresponding induced norms are denoted

by I . IH and I . l-, respectively. Since Vis densely
and continuously embedded in H, the Hilbert

spaces Hand Vform a Gelfand triple (Showalter,
1977)

where the symbol 1--+ denotes embedding, H·

and V· denote the continuous duals of H and V,
respectively. All of the embeddings in (5) are

dense and continuous. The following is also sat

isfied:

QJ(t, x) (2)

u(t,x)

Fig. 1 An Euler-Bernoulli beam deflected due to
distributed loadings

where ql, qz, and q3 are unknown constant
parameters.

To provide a framework that facilitates rigor

ous analysis, approximation, and implementation,

it is advantageous to consider a weak form of (2)

(see Banks et al., 1997). To convert (2) into weak

form, both sides of (2) are multiplied by a suffi-

Kelvin- Voight damping, is given by (Clough and
Penzien, 1993)

(t ) + Cf (EICfUU, x) + rlfuU, x) )
PUtt ,x a? Jx2 C[).J. ox2ot

=/(t, x), O<x<a, t>O, (I)

u( t 0) ou(t,O) u(t a) ou(t, a)
, ax ' ax 0,

u(O, x) = Uo(x), Ut(O, x) =Uto(x),

where U (t, x) is the transverse-displacement

(and is also the observed distributed state), p is

the mass density, E is the Young's modulus or the
modulus of elasticity, I is the second moment of

inertia of cross section about the centroid axis, CD

is the coefficient of damping, / (t, x) is the

control input force, Uo(x) and Uto(x) are the

initial conditions, ut=aulot, and U/t= (fu!atz.

The boundary conditions indicate that both ends
are fixed.

A typical problem regarding system (I) would

be to estimate the mass density (p), Kelvin-Voigt

damping coefficient (col) , and stiffness
coefficient (EI), which may depend on the time

and!or spatial coordinates. If the shape of a beam

is uniform, the coefficients can be assumed as

constants because the material properties (p, E,
and CD) change slowly with respect to time. Then
(I) can be rewritten as
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for some positive (embedding) constant K.
For ¢, 1/1 in V, the sesquilinear forms o.ia.: "

.): VX V~ C, i=l, 2 are defined as

(Ji(qi; ¢, 1/1) = l.qiDZ¢DZ1/Idx,

for qiER and i= 1,2 (7)

where a., i= 1,2, satisfy various continuity,

symmetry, coercivity, and linearity conditions, i.
e., for each qi=R+, a, satisfies

(AI) lai(qi;¢,lb')I~qil¢lvIVtlv, (boundedness)

(A2) Re(Ji(qi; ¢,¢) ~ai I ¢ I~,

for some a, >0, (-coercivity)

(A3) (Ji(qi;¢, 1/I)=(Ji(qi;1/I, ¢)
(syrnmetricity)

(A4) The map qi ~ (Ji(qi; ¢, 1/1)

from R into C is linear, (R-linearity)

for i=I,2 and all ¢,1/IE V. The boundedness
results from the Schwarz's Inequality for inner

products (Luenberger, 1968, p. 47), while the V
-coercivity follows from the fact that there exists

a a, >0 such that

Re(Ji(qi; ¢,¢)

= lqi([J¢) "dx~ a,1(IY¢) Zdx=ai I ¢ I~,

for i= 1,2 and all ¢E V.
Now, two product spaces H= VxH and V=

VX V are introduced. Note that H and V are
Hilbert spaces with the standard inner products
given by

<(::),( ~:)>H

=al (qt ; ¢\, #1) +(¢z, MH' (::).( ~:)EH (8)

<(::H ~:)>v

=al (qt ; ¢\, Vtl) +al (qt ; ¢Z,iftz), (~),( ~)EV (9)

for qtER+. Instead of (8), a modified inner

product in the product space H, from the work of
(Bohm et at., 1998), is introduced as follows:

«(::),( ~:r)H =al(qt; ¢I,1/I1) +(¢Z,1/IZ)H (10)

+,u{ (¢I,1/IZ)H+(¢Z, 1/11) + (Jz(qz* ; ¢1,1/I1)}

where (::H:)EH and at, ,uER+, i=I,2.

The symmetry, linearity with respect to the first

component, and homogeneity properties of (10),

as an inner product, are apparent. To show the

positiveness, i. e., «::)'(::»H~O, the fol-

lowing inequality is asserted:

al(qt ; rlh,¢I) +(¢Z,¢Z)H+ IJI12(qz* ; ¢1,¢1) ~2IJ(¢\,¢Z)H (11)

The right hand side of (II) satisfies

(JI(qt; ¢\,¢I) + (¢Z,¢Z)H+,u(Jz(q! ; ¢\,¢I)

~al I ¢II~+I ¢zl~+ ,l.Iazl ¢II~

where the V -coercivity of the (J;'s was used. On

the other hand, the right hand side of (II) satis

fies

2f.l(¢\'¢Z)H~f.l(1 ¢11~+1 ¢Z I~) ~f.l(J(l1 ¢11~+1 ¢zl~)'

where equation (6) has been utilized in deriving

the second inequality. Therefore, if ,u:5:min{ adl
Kl-azl,l} and ,u is sufficiently small, then (10)

is an inner product in H. The norm induced by
( 10) is equivalent to the standard norm induced

by the inner product (8), i.e. there exist k\, kz>
o such that

kl { (JI(qt ; ¢\,¢I) +(¢Z,¢Z)H}

:5: (JI (qt ; ¢l, ¢l) + (¢z, ¢z)H+ ,u{ (Jz (qi ; ¢\, ¢l)
+2(¢1,¢Z)H}:5:kz{ (Jl(qt ; ¢\,¢l) +(¢Z,¢Z)H}

With these definitions, (3) can be rewritten as

(f.ltt,rp)+al (ql ; u,rp) +az(qz; u,rp) =q3<J,rp) (12)

for rpE V and t>O, where qIER, i=I,2, are

unknown and the control input force f is assumed

to satisfy JELz(O, T; V*) for all T>O. The

MRAC problem, in the presence of unknown
parameters q;'s, for plant (12) is now to find a

control input j in feedback form which forces the

state, U, to track the state of a reference model, u,
given by

(Vtt,rp)+(Jl(qt: v,rp) + (Jz(q! : Vl,rp)

=Q3*(g,rp), O<x<a, t>O (13)

V Ct,O) avCt,o) VCt,a) dvCt,a) 0
ax dX

V(O,x) =Vo(x), Vt(O,x) =VtO(x)

for cpE Vand t>O, where qiER+, i=I,2,3, and

the input reference signal is assumed to satisfy
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gEL2(0,T; V*) for all T>O. established. Now, a functional V: [0, (0) -> R+
is considered as

3. Design of Control Laws: Stability

Consider a nominal control input, f*, as
follows:

By considering an appropriate Lyapunov func
tion, the stability of the closed loop system to

gether with the adaptation laws can be

Then the following state error equation is
obtained from (13) and (I6) .

<ett,rp)-(Jl(q3iX; e,rp) -(Jl(q3iX; v,rp)

+O'l(qi' ; e,rp) -(J2(q30.;; et,cp) (18)

-(J2(q30.;; Vt,rp) + (J2(q; ; et,rp) =q3~<g,rp)

e (r.O) oe~~,O) e i.t.a) = oe ~~a) 0

e (o,x) =eo (x). e, (O,x) = etO (x); 8;(0) = iJ." i=1,2,3

V(t) =J/(e ),(e ) +_1(iX2+0.;2+~2)
~ et ~ H 2y

I=f{ (JI(qi'; e, e) +<et, e.>»

+2,u<e, e.;» + (52 (,uq; ; e, e)}( 19)

+_1_( &?+ 0.;2+~2)
2y

where y>O is an adaptive gain. Note that eE!C

(r) and etEV(r).

Differentiating (19) with respect to t along the

trajectories of (18) yields

V(t) = 0'1 (qi' ; e. et) +(et, ett)H+,u<et, e.;»
+,u<e, ett)H+0'2(,uqi; e, et)

+..!..(eItA +e20.;+e3~)
r

=(JI(qi'; e, et) + 0'1 (q3iX ; e. et)

+0'1 (q3tA ; u, et) -(Jl(qi'; e, et)

+(J2(q30.;;et, et)+(J2(q30.;;Vt, et)

- (J2 (qi ; e-, et) +q3~<g, et)

+,u<et, et)+(Jd,uq3iX; e. e)

+ 0'1 (p.q38t ; u, e) - 0'1 (p.qi' ; e, e) (20)

+ 0'2 (,uq30.; ; ee, e) + (J2(,uq30.; ; Vt, e)

-0'2(p.q;; ei, e) +,uq3~<g, e)

+f52(p.qi; e, et) +..!..(818t+82~+83~)
r

Therefore, we choose the adaptation. laws for 8i

(t), i.e., Bi (t), which are equal to if; (t), as

8t (t) = - y{ 0'1 (q3 ; e +u.e.)
+ 0'1 (,uq3 ; e+v,e)}, 8t(0) =8to (2Ia)

fh.(t) =-y{ 0'2(q3; et+Vt,et)

+0'2(p.q3; et+Vt, e)}, Oz(O) =8z0 (2Ib)
fh(t) =-r{ Q3(g,et)+p.q3(g,e)}, fh(O) =fho (2Ic)

Although the adaptation laws (2Ia) - (2Ic) con

tain the unknown parameter q3, this is not a

problem because rq» and r,uq3 are treated as
adaptation gains.

Let ,u satisfy

,u<min{al/1J(!-Q!I, I, Q!/J(!} (22)

where K, al, and a2 are defined in (6) and

condition (A2), respectively. Then, (20) with the
adaptation laws (2Ia) -(2Ib). condition (A2),

and (6) becomes

V(t) = -<11 (fJ.Qi' ; e, e) - f52(Q2' ; e.. et) +fJ.(et, et>

( 17)et.t.x) =u(t,x) -V (t,x)

<J*,rp)=(J1(fit; u,rp)+ f52(8t" ; Ut,rp) + fh*(g,rp) (14)

where 8t" = (ql - qt) / q3, rh* = (q2 - q;) / qz, and

fh* = q;jas- By substituting the nominal control
input into (12), it is seen that (12) coincides with

(13), i.e., the plant equation and the reference

model equation become identical. But because q;,

i= 1,2,3, are unknown, the values of 8t are no

t known. Hence, the following adaptive control
law is introduced:

<J,rp)=(JI(8t(t) ; u,rp) +lh(tJz(t) ; Ut,rp) +fk(t) (g,rp) (15)

for each t>O, where 8i(t)ER, i=I,2,3, denote

adaptively updated estimates for 8t, respectively.

The substitution of (15) into (12) yields the

closed loop plant equation as

<Utt,rp)-(JI(q3iX; u,rp) + (Jl(qi' ; u,rp)

-0'2(q30.;; Ut,rp) +0'2(q; ; Ut,rp)

=qih<g,rp)+q;<g,rp) (16)

where e.(t) =8;(t) -8t, i=I,2,3, are the con

troller parameter estimation errors. In deriving
(16), q;-q38;=q3(q;-qt) / q3+ql-q38;=ql

q3(O;-On =ql-q3if, i=I,2, and q3fh=q3~+

q3fh* have been used. Note also that if e.(t) -> 0,

i = 1,2,3, i.e., the controller parameter errors

converge to zero, then the closed loop plant (16)

is exactly the same as the reference model (13).

Let us define the state error as
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::::;;-ad e 1~-Cf21 e, 1~+f.L1 e, I~

::::;;-all e 1~-a21 et I~+~I e, I~

= -all e I~-{ a2- f.LJ(l}l e, I~

::::;; -Cl!( :)1:

(23) We first define Al (q3ff) : V ~ V* given by

<AI (q3if)(:~),(~) v*.v=(Al(q3ifr) rpl, Vrl)V*.V

- I -
+(A2(q3/h) rp2, Vr~v*,V+Tq3fk(g, T/!z>v*,v (26)

4. W ell-Posedness of the Closed
Loop System

where Cl>O.

Therefore, the functional V(t) given by (19) is

nonincreasing, and is a Lyapunov function since

if(t) is negative semidefinite. The existence of a

Lyapunov function V(t) implies that a set Ef/=
{(e, e., I[i); V(t) ::::;;/3, /3ER+} is positive

invariant (Walker, 1980). Hence we have I(:J

Iv::::;;/3',I(:JIH::::;;/3' and Il[il::::;;/3', for \;]'t2 0,

where /3' is a positive constant not depending on
time t .

In this section it will be shown that the
nonlinear coupled equations (13), (18), and

(21a, b, c) are well-posed, i. e. there exists a

unique solution for the coupled system. To pose

the problem in first-order form, define operators
Al(ql), A2(q2) EL( V, V*) as

<Ai(qi) ¢, y,)V*.V=(Ji(qi; ¢,y,) , (24)

for qiER, i=I,2, and ¢,y,EV. L(V, V*)
denotes the space of bounded linear operators Ai
(qi), i = 1,2, mapping from V into V*

(Showalter, 1977) and <·,·)v*.v denotes the

duality pairing between V* and V. The existence

of Al (ql) and A 2(q2) is guaranteed by the

boundedness of (Jl and (J2, respectively. Let the

parameter space be denoted by Q=R3 with an

inner product <', ')0 and the corresponding
induced norm be I . 10. For the product spaces
H= VxH and V= VX V, which form a

Gelfand triple V ~ H ~ V* with the em-

beddings which are dense and continuous, we
have that,

(83) There exists £l4>0 such that

(28a)

(28b)

Dom(Ao(q*) )

={e=( ~)EV: Al (qr*) rPl +A2 (q;) r/J2EH}

(
0 -I)

Ao(q*) = Al(qt) A 2(q;)

- (~l) (Y,l) .for q38E Q and ~2' ifF;. EV. The operator In

(26) satisfies

(8I) There exists ll3>0 such that

(82) The map I[~ Al (I[) (:) from Q into

V* is linear, (Qe-linearity)

for each I[E Q and (::) EV, which follows from

(A4) .

Then, the error system (I8) is rewritten as

<(:~).(:))+<(AI ~qt) A~:;))( :J.(:)
-(A1(q38)(:J.(:))-(AI (q38) (:J.(:) )==0 (27)

1<Al(ii) (:).( ~:) v*.J~~1 I[ lol( :~)Ivi( ~:)Iv'
(boundedness)

from (A I) and Schwarz's Inequality for inner

products.

To obtain a strong form of the first order system

that is appropriate for control purposes, a system
operator Ao(q*): Dom(Ao(q*» cH ~ H is
defined as follows:

The operator in (28b) satisfies the following
conditions:

1<Ao(q*)(:)'(~)v., ~£l41 q*IQI( :)lvI( ~)Iv'
(boundedness)

for (:~),(~)EV from condition (AI) and

Schwarz's Inequality for inner products,

(25)

::::;;0,

I~ IH::::;;.&I tp Iv
where '&>0 and rpEV.
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(B4) There exists a po>O for which

Re<Ao(Q*)(:H:) v*.v~Poi(:)I:. (:)EV,
(V-coercivity)

from condition (A2).

The operator -Ao(q*) restricted to the

subspace Dom(Ao(q*)) is the infinitesimal gen

erator of an analytic semigroup, { To(t) : t::2':O},

of bounded linear operators on H (Banks and Ito,

1988). From (25) and (B4) we have that

I To(t)cpl~e-PoKoZtl cpl. cpEH (29)

The state error system (18) as a first order system

is then given by

<et, cpo)+<Ao(q*)e, CPo)-<A1(q3if) V, CPo)

-<A1 (q38) e, CPo)=O (30)

where e=( :JEH, v=( ~JEH,

and cPo= (::)EV

The adaptive laws (2Ia)-(2Ic) are rewritten as

oI~+r{<A (q3~) v.et)+<AI (q3~) e.e.:
tfl<Al(q3~) v,e)+fl<Al(q3~) e,e)}=O,

8 zOz+ r{<AZ(q30z) Vt,et)+<AZ(q30z) et,et)

t .u<AZ(q30z) Vt,e)+ .u<AZ(q30z) et,e)}=O,

83 8,;+ r{ q38,;<g,et)+,LlQ38,;<g,e)}=0

(31a, b, c)

Let A Z(q3if) : V ~ V* be defined by

<A Z(q38)(:),(~)>v*.v

=<A1(Q3~) gilo¢i>V..v+<Az(Q3~) qJ2,lh>v..v (32)
I -

+Tq3(}g<g, 'h)v*.v

then the adaptive laws (31a, b, c) are written as

<0, 8)Q+ r {<A l(q38) v, e)+<A1 (q 38) e, e)
+ fl[<Az(q3if) v, e)+<AZ(q38)e, e)]}=O (33)

where 8= (~, Oz, 8,;). It is noted that the operator

A z(if) also satisfies

(85) There exists as>0 such that

I<AzUi) (gil),(Vrl)"'- * I~asl q-IQI(gil)II(VrI)I.
i qJ2 Vrz / v ,v gi2 V rfrz v

(boundedness)

from condition (AI) and Schwarz's Inequality

for inner products.

(86) The map if ~ Az(if) (::) from Q into

V* is linear. (Qr-linearity)

The reference model system (12) is rewritten as

Then the model system (34) is given by

<vt, CPo) +<Ao(q*) v, CPo)=q;<go, CPo) (35)

where go= (~). The solution to the initial value

problem (35) is given by

v(t) = To (t)vo+it To(t-s) go(s) ds, t::2':O

(36)

First, the following regularity result for the

reference model (35) is established.
Theorem 1: For the reference model given by

(35), the following results hold:

(i) If goELo.(O, 00 ; V) and voEV, then vE
L ..(O, 00; V).

(ii) If goELz(O, 00 ; V*), then vEL.. (O, 00;

H)nLz(O,oo;V).
Proof: Statement (i) follows immediately from
(29) and (36). To verify (ij), for almost every

t >0 we have that

I d
2 dt l v(t)I~=<-Aov(t) +go(t), v(t)

~ - Pol v (t) I~+I go(t) Iv* Iv (t) lv

=-~ v(t)I~-~pol vWlv-1Ko(t)lv*r+~ Ko(t)!v*!

~ -If-I V (t) I~+ 2~0 Igo(t) Iv*z (37)

Integrating both sides of (37) from 0 to t yields:

I, lIt
Iv(t)I~+Po Iv(s)l~ds~lv(o)IH po !go(s)lv*. t>o.

Thus, we have

Iv(t) IHPoI'1 v(s)l~ds~1 v(O) I~+~ go(t) IL(o.~.v*), t>O.po

from which the second assertion is immediately

obtained.

We now combine equations (30), (33), and
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(35) in a first-order system as

(et,gJo)+(Ao(q*) e,gJo)-(A l (q38) {e+v },gJ)

=0, e(O) =eo (38a)
(Vt,gJo)+(Ao(q*)V,gJO)=q3*(fJiJ,gJo), V(O) =vo (38b)

<1ft,8>Q+r{<Al(q38) {e+v },e>
+J.l<A2(q38){e+v},e>}=0,0(0)=f!o (38c)

We consider the system (38a) - (38c) written as

<et, ipo> + <v t, ipo> + <1ft, O>Q + <Ao(q*) e, ipo>
+<Ao(q*) V,ipo> + rO.O,O>Q
=(Al(q3§){ e+v },gJo)+q;(go,gJo)+r(M,il>Q
-r{(Al(q3§){e+v },e)+t-t(A2(q38) {e+v },e)}(39)

Let Ho=HxHXQ be endowed with the inner

product

<(ipl, 7/11, ql), (ip2' ifrz, q2) >Ho

=<ipt, ip2>H+<7/ll, 7/l2>H+<ql, q2)Q (40)

where (ipi, 7/li, qi) EHo, i=I,2 and let I ·jHo
denote the corresponding induced norm. Also, let

Vo= V XV X Q be endowed with the inner prod

uct

<( (ipl, 7/11, ql), (ip2, ifrz, q2) >Vo

=<ipl, ip2>V+<7/lt, 7/l2>V+<qt, q2>Q (41)

where (ipi, 7/li, qi)EVo, i=I,2 and let 1·lvo
denote the corresponding induced norm. Then V o
and Ho are Hilbert spaces, and V o is densely and
continuously embedded in H o. It follows that

Vo~Ho~Vti (42)

with the embeddings which are dense and contin

uous.

For r>O, define the linear operator A. : V o -->

Vti by

<A.x, (J»v~,vo=<Ao(q*)e, ipo>
+<Ao(q*) v, ipo>+ r<).,O, 8)Q (43)

where x= (e, v, if) EHo, (J)= (rpo, ipo, 0) EVo. In
o

the above definition, <.,. >v*,vo denotes the

duality pairing between Vti and Yo.
For vi >0, define C), : R+ XHo --> Vti by

<C), (t, x) ,(J»v~,vo=<Al (q3if) {e+v },rpo>

+ q3* <go, rpo) + r<).,O, O>Q
- r{ <AI (q3if) { e+v },e>
+t-t(A2(q38H e+v },e)} (44)

For rpEV, define the operator Bt(rp) : Q --> V*

by

<Bi(rp) q,7/I>=<At(q) ip,7/I> for i=I,2 (45)

where 7/lEV, qE Q. (8 I) and (85) imply that

for rpEV, R(rp): L(Q,V*) with IBl(rp)l~a31
iplv and IB2(rp)l~a51 iplv. For rpEV, let Bi(rp)
'EL(V,Q) denote the adjoint of Bt(rp). For ip,

7/lEV, we then have

(Bt(gJ)'ifr,q)Q=(Bi(gJ)q,ifr)=(Ai(q) gJ,ifr) for i=I,2 (46)

That is,

(Ai (q3§) {e+v },gJo)=(Bt(e+v) q38,gJo) for i= 1,2.

Therefore, (44) is written as

(C), (l,x) ,tJ»v~,vo=(BI (e-l-v) q38,gJo) +q3*(go,gJo)
+r{(A8- B1(e+v)'e,q3if)Q- f1.(R (e-l-v) e',q3if)Q} (47)

Thus, we consider the system (38a) - (38c) written

as

<Xt(t) ,(J»v~,Vo +<A.x (t), (J»v~ ,Vo
=<C),(t,x(t),l.P)vbo,X(O) =Xo (48)

where ),,>0, and for each t~O, x(t) = (e,v, if) ,
and (J)EVo

To establish the existence of a unique solution
to the system (48), we establish the existence of a

unique strong solution to the initial value prob

lem in Ho given by

x, (t) +A-x (t) =C), U,X (t)), x (0) =Xo (49)

Note that Dom(A),) is independent of ).,>0 and
that for )">0, -A), is the infinitesimal generator

of a uniformly exponentially stable analytic

semigroup, { T), (t) : t ~O}. Thus, in the usual

manner, a unique mild or generalized solution to

the system (49) is obtained as

x (t) = T), (t) Xo+it T), (t - s) c. (s,x (s) ) ds (50)

5. Tracking and Parameter
Errors Convergence

Theorem 2: Let be defined by (22). Then, from
(19), (23) and (50) the following results hold:

lim I e(t)IH=O and lim I etU)jv=O (51)
t-oo t-oo

Proof: Due to the length of the paper, the proof

is omitted. However, the assertion can be easily
proved by applying Theorem I of (Hong, 1997).

Theorem 2 implies that the control objective, i.

e., asymptotic tracking, is achieved. Indeed, all
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signals in the closed loop are bounded and model

following is achieved. In addition to the state

error convergence to zero, it is also desirable to

have an adaptive system to provide parameter

error convergence as well, i.e., the controller

parameters 8iCt), i= 1,2,3, should converge to the

true parameters 8t Ct)' respectively, as t --4 00.

Parameter error convergence is important in the

sense that the adaptive system provides robustness

in the presence of disturbance. In order to estab

lish this, the following persistency of excitation

condition is introduced.

Definition 3: The reference model (38b) or the

triple {Ao,go,vo} consisting of the reference

model dynamics operator Ao, the input reference

signal lJo, and the initial state of the reference

model Yo, will be said to be persistently exciting,

or, sufficiently rich, if there exist positive

constants ro, 00, and co, such that for each pE Q
with IP10= I and t ~O sufficiently large, there

exists fE[t,t+roJ for which

Iljl+&oAI (p) u (r) drll.~ co (52)

where u=e+v is the closed loop state of the

plant as given by (38a) - (38c).

Theorem 4: If either goELz(O,oo ; V*) or goE

Loo(O,oo; V) and voEV, and if the reference

model (38b) is persistently exciting, then lim I 0
t_

Ct) 10=0.
Proof: In this proof we assume that I • 1=1

• IH, 11,11=1· Iv and II· 11.=1 • Iv*. If goELz
(0,00 ; V*), then Theorem I implies that uELz
(0,00 ; V). Lyapunov equation (19) above

implies that lim! OU) 10 exists. If we assume that
t_

lim I O(t) 10*0, then there exists {tie }k=1o an
1-00

increasing sequence of positive numbers for which

lim tle=oo andIe_oo

1q30UIe) lo~ 8, k= 1,2,... (53)

for some 0 >0. If the reference model (38b) is

persistently exciting, it then follows from (B I)

and (B5) that for each k= 1,2;" and some [;,E

[tle,tle+roJ, we have

0<oco~1 Q3B(t,,) 101It;~a,Ao( I~:t~::? 10 )u (t) dtlL

= II Jt.+ &oAI (Q30UIe)) u Ct)«l, (54)

_ { rt-'+&o }I/Z
~aa IQ38 IL.lo,oo,O)!& It. II u(t) IIZdt

Letting k=oo in (54), and using the fact that uE

Lz(O,oo; V) implies thatr:lim _ 1/ uCtWdt=O.
"'-00 t.

A contradiction is obtained.

Now suppose that goELoo(O,oo ; V) and voE

V. We first recall that Theorem 1 implies that vE

Loo(O,oo;V). Now, for tz>tlo (38a) , (83), and

(25) imply that

111,/' AI(Q30(t))u(t) dt ll.
=111,tz Al (Q30(t)) {e(t) +v (t) }dtll.
~I/ eCtz) 11.+11 eCtI) 1/.+1,12 11 AoeW II.dt

~Ko 1e(tz) 1+Ko I e(tl) I+a.(tz- tl)l/z{f' Ie(tllZdtr (55)

Also, from (38c), (8I) and (B5) it follows that

I oCtz) - OCtI) lo=sup l<oCtz) - OCtI) ,p)ol
IPI.SJ

=sup 1< (1
2

8t Ct) dt,p)QI
IPI.Sl lit

~ r.; YI<AI(p){e(t) +v(t)},e(t)ldt
lit IPI.s!

+ r.; y,uI(Az(p){ e(t) +v (t) },e(t) )Idt
lit IPI•.::]

~ yaa1,
I'{11

e(t) II +11 vet) Inll e(t) Iidt

+yttas1,
I'{I1

e (t) II +11 V (t) 11}l1 e(t) Iidt

~ yaa (t
2

11 eCtWdt+ yaall v(t) IIL.lo,oo;V)lit

1,1
2

11 eCt) Ildt+yJllls1,tzll eU) IIZdt

+rttasll V (t) IIL.(O,oo;V) r211 e (t) IIdtlit

~ yaa r211 eCt) IIZdt+ yaall V (t) IILoo(O,oo;V)lit

Ctz- ft) 112{1,
1

211eUWdtV'z

+ yttas (1211 eCt) II Zdt + rttasll vU) IIL.(o,oo;V)
)11

(tz - tI ) 1I2{1,t'll e (t) II Zdt } liZ (56)

Once again assume that lim I tiU) 10*0, and let
1_

{t,,}k=I be an increasing sequence of positiv
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e numbers for which lim tk=oo and for which
k-~

(53) holds for some 0 >0. Assume further that

the reference model (38b) is persistently exciting,

and for each, k=I,2,"', let i;;E[tk,tk+rv] be

such that

x 1&{,kt.+&11 e(t) IIZdt} I/Z+0011 v(t) IIL.(O..,;V) (58)

Now consider the functional given by (19) ; (23)

can then be rewritten as

V(I) =-I1I(f-lqt; e.e) -l1z(qz·; et.et) +,u(et,et)

s-all e It-azi e, It+.ul e, 11J (59)

s-all e It-azi e, It+J(!.u1 e, It
=-all e It-{ az-J(!.u}1 e, It

From (59) we have that

V(t) +coltl e(s) I~dssto, t:?O, (60)

where coER+ and to= V(O). (60) implies that

I
t+L

for any L >0 ~~~ t II e (s) Ilzds=O. Therefore,

letting k ---> 00 in (58), Theorem 2 and (60) imply

that

which is a contradiction, and the theorem is

proved.

6. Numerical Simulations

In this section, the proposed MRAC scheme

developed in Sections 2-5 is simulated for the

shape control of a flexible beam. The flexible
beam is assumed to have Kelvin-Voigt damping

(CD]) , both ends fixed, a constant flexural rigidity

(E]), and uniform mass per unit length (p). o,
E1, and cD1 are unknown, but for simulation

purposes the values are taken as 5Kg/m, 1.5Nm2
,
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0.03

0.025

0.1 0.2 03 0 , 05 06 01 0.8 09
Time(sec)

Fig.2 Vertical displacements at the middle point of
the beam: solid line for plant (12) and dashed
line for reference model (13)

25

1 rtfE15 f\"v"7""=-----------....j
e
tii

05

o~_:'_:-::'-~:__~-~~-~-~~--l
o 01 0.2 03 0.4 0.5 0.6 07 08 09

T""e (sec)

Fig. 3 Convergence to the true stiffness coefficient

EI=1.5 Nrrr

and 0.033Nm2
, respectively. The reference model

parameters are chosen as qt=2.727, at> 0.019,

q3*=0.909. A reference input g(x,t) = 10+2sin
(10m) +cos (5;rt) N is applied, assuming that

the response {v,Vt} are the desired characteristics.

The adaptive gains in (2Ia-c) are selected to be

r=200 and ,u=0.02.
Figure 2 shows the deflection of the beam at the

middle point. The solid line indicates the

deflection of the actual beam and the dashed line

refers that of the reference model. It is seen that

the difference between these two lines becomes

zero, i.e., the convergence of the state error e (x,t)
to zero is shown. Figures 3- Figures 5 show the

convergence of the tuning plant parameters to the

actual values £1=1.5, cDl=0.033, p=5, respec

tively.

~ 002;:;
m
5

~O,015
o

0.01

0.005

o0:--;0:'::2----.,0~':-~06:---::'0'::-B-~,-'~2-~'~'-1~6-,~B---l
Time (sec)

Fig. 4 Convergence to the true damping coefficient
col =0.033 Nrr?'

·1

.20;--;;07.1---;0;':;2:-0;;':.3;---::0.7",--:0";".5----=0:'::6:-::'0.]:--""0'="8----:0~.9----l
Time (S8C)

Fig.5 Convergence to the true mass density p=5
Kg/m

7. Conclusions

In this paper, the direct model reference

adaptive control for a flexible structure, i.e. an
Euler-Bernoulli beam with Kelvin-Voigt

damping, was investigated. The stability of the

closed loop system together with proposed
adaptation laws was established by considering

an appropriate Lyapunov function. The well
-posedness of the closed loop system was

established by treating the closed loop system as a
semilinear system with a linear component of the

dynamics being the infinitesimal generator of an

analytic semigroup. It was shown through the

Lyapunov redesign approach that the state error

actually converges asymptotically to zero. With

the additional assumption on the reference model

that the input signal is persistently exciting,
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parameter-error convergence was also

established. Even though distributed sensing and

actuation were assumed in this work, the authors

believe that the approximation of the control law

derived by using the original PDE, rather than

approximating the PDE and deriving a control

law, can perform better because spillover

problems appearing in modal control can be

eliminated. The issue of finite-dimensionalization

of a distributed control law is an important re

search topic. Other issues related to the stability

and performance of finite-dimensionalized

controllers are also left for future work.
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